High-Quality Multiterminal Suspended Graphene Devices
نویسندگان
چکیده
منابع مشابه
High-quality multiterminal suspended graphene devices.
We introduce a new scheme to realize suspended, multiterminal graphene structures that can be current annealed successfully to obtain uniform, very high quality devices. A key aspect is that the bulky metallic contacts are not connected directly to the part of graphene probed by transport measurements, but only through etched constriction, which prevents the contacts from acting invasively. The...
متن کاملTransport in multiterminal graphene nanodevices.
We study the transport properties of multiterminal graphene nanodevices using the Landauer-Buttiker approach and the tight binding model. We consider a four-terminal device made at the crossing of a zigzag and armchair nanoribbons and two types of T-junction devices. The transport properties of graphene multiterminal devices are highly sensitive to the details of the junction region. Thus the p...
متن کاملHigh-field electrical and thermal transport in suspended graphene.
We study the intrinsic transport properties of suspended graphene devices at high fields (≥1 V/μm) and high temperatures (≥1000 K). Across 15 samples, we find peak (average) saturation velocity of 3.6 × 10(7) cm/s (1.7 × 10(7) cm/s) and peak (average) thermal conductivity of 530 W m(-1) K(-1) (310 W m(-1) K(-1)) at 1000 K. The saturation velocity is 2-4 times and the thermal conductivity 10-17 ...
متن کاملHigh thermoelectricpower factor in graphene/hBN devices.
Fast and controllable cooling at nanoscales requires a combination of highly efficient passive cooling and active cooling. Although passive cooling in graphene-based devices is quite effective due to graphene's extraordinary heat conduction, active cooling has not been considered feasible due to graphene's low thermoelectric power factor. Here, we show that the thermoelectric performance of gra...
متن کاملGraphene nanoribbon devices at high bias
We present the electron transport in graphene nanoribbons (GNRs) at high electric bias conduction. When graphene is patterned into a few tens of nanometer width of a ribbon shape, the carriers are confined to a quasi-one-dimensional (1D) system. Combining with the disorders in the system, this quantum confinement can lead into a transport gap in the energy spectrum of the GNRs. Similar to CNTs,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nano Letters
سال: 2013
ISSN: 1530-6984,1530-6992
DOI: 10.1021/nl402462q